Единое окно доступа к образовательным ресурсам

Усталостная долговечность и повреждаемость авиационных конструкций

Голосов: 0

В учебном пособии приведены результаты исследований в области расчетов долговечности авиационных конструкций при циклическом нагружении на основе методов схематизации переменной нагруженности, моделирования накопления повреждений в материале, стабилизации рассеяния свойств материалов путем оптимизации статистических моделей, обоснования вероятностных распределений показателей надежности, обработки цензурированных выборок, возникающих при целевых осмотрах самолетов. Приведены методы моделирования вертикальных перегрузок, возникающих в опасных зонах планера самолета, расчета повреждаемости и эквивалентной наработки в этих зонах, статистического анализа разброса усталостных свойств авиационных материалов по данным испытаний конструктивно-подобных образцов, поддержания жизненного цикла изделий авиационной техники. Учебное пособие предназначено для студентов, обучающихся по направлениям подготовки бакалавров, магистров и специалистов «Авиастроение», «Машиностроение», «Прикладная механика», «Конструкторско-технологическое обеспечение машиностроительных производств», «Испытание летательных аппаратов».

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.
     72 
 
Таблица 4.4.6. Значения средних квадратических отклонений эквивалентной вертикальной 
перегрузки для каждой области и группы нагруженности 
 
 СКО эквивалентной вертикальной перегрузки, =
N=2=P=4=
группа =1,34=1,12=0,63P=J=
группа =0,57N=0,914=0,73=0,234=
=
Зная  величину  СКО  и  математическое  ожидание  каждой  области 
нагруженности  для  всего  полетного  спектра  как  рядовых  самолетов  строя,  так 
высоконагруженных  самолетов-лидеров,  а,  также, учитывая,  что  законы  распределения 
значений  для  каждой  области  нагруженности  не  противоречат  нормальному  закону 
Рис.4.4.Baf_g_gb_ kj_^gbod\Z^jZlbq_kdbo 
hldehg_gbcagZq_gbc\]jmii_А 
Jbk4.4.3Baf_g_gb_ kj_^gbod\Z^jZlbq_kdbo 
hldehg_gbcagZq_gbc\]jmii_В э кв
ynS A B э кв
ynS э кв
yn э к в
yn  

 73 
распределения, можно определить максимальные и минимальные значения эквивалентной 
перегрузки  для  заданного  значения  и  суммарной  продолжительности полета .  Для 
определения  наибольшего  и  наименьшего  значений    воспользуемся  вероятностным 
подходом.  
Вероятность  попадания  случайной  величины  на  участок  симметричный 
относительно  математического  ожидания ,  ограниченный  значением  сверху  и 
значением — снизу, для нормального закона распределения  будет определяться как: 
,                  (4.4.17) 
где ; 
 - нормальная функция распределения. 
Таким  образом, воспользовавшись  выражением  (4.4.17)  и  задаваясь  требуемым 
уровнем  доверия  или  вероятностью ,  а  также оценками СКО  и  МО  для  заданной 
области нагруженности, могут быть определены численные значения  и . После 
того,  как  определены  максимальное  и  минимальное  значения  эквивалентных 
вертикальных  перегрузок,  перегрузок,  определение  уровня  нагруженности  и 
соответствующей  ему  величины  условной  часовой  повреждаемости,  осуществляется  в 
соответствии  с  методикой  описанной  выше  (определяется  и  т.д.).  Для  пояснения 
рассмотрим пример. 
Пример 4.4.1. 
Рядовой  самолет  строя  должен  совершить  серию  полетов  суммарной 
продолжительностью  мин.  Необходимо  с  вероятностью  оценить 
диапазон  возможных  значений  эквивалентных  вертикальных  перегрузок,  которые  будут 
реализованы самолетом за время эксплуатации . Определим  и  для заданной 
продолжительности  полета ,  воспользовавшись  результатами  статистического  анализа 
нагруженности  самолетов  группы  и    выражением  (4.4.17). В  соответствии  с 
эмпирической  зависимостью  (4.3.3),  рядовой  самолет  строя  (группа ),  совершивший 
полет  продолжительностью 35  минут  должен  был  выйти  на  вертикальные 
перегрузки,  среднее  эквивалентное  значение  которых  равно .  Значения 
эквивалентных  вертикальных  перегрузок  подчинены  нормальному  закону  распределения 
с СКО  и средним . На рисунке 4.4.4 показана соответствующая 
эмпирическая  зависимость  и  характерное  для  заданной  продолжительности  полета 
рассеяние  значений  эквивалентной  вертикальной  перегрузки. Гистограмма на  рисунке 
4.4.4 показывает  рассеяние  значений  по  данным  реальной  эксплуатации  самолетов 
строя, а именно по 917 полетам, суммарной продолжительностью 544 ч. э кв
yn пT э к в
yn э кв
yn э к в
yn э кв
ynm ax э к в
ynm in 1
)(
2*





э к вy
э к вyэ к вyэ к вyэ к вynS
n
nnnP 2
minmaxэквyэквyэквy
nn
n

 dtex
xt


2*
2
2
1)(
 P э кв
ynm ax э к в
ynm in *
kyn 35пT %99P пT э кв
ynm ax э к в
ynm in пT A A пT 84,3э кв
yn 34.1э кв
ynS 84,3э кв
yn э кв
yn  

 74 
Максимальные  столбцы  гистограммы  соответствуют  перегрузкам  (121 
значение) и  (121 значение). Согласно уравнению (4.4.17) имеем: 
  или ; ;   
Следовательно,  максимальное  значение  эквивалентной  вертикальной  перегрузки  с 
вероятностью  покрытия  равно , ,  а 
минимальное значение соответственно — ; . 
Точность полученных результатов при вероятностном подходе существенно зависит 
от  величины  среднеквадратического  отклонения ,  т.е.  от  того,  насколько  точно 
была проведена дифференциация самолетов по  уровню эксплуатационной нагруженности 
и  определена их  принадлежность  к  той  или  иной  группе.  В  реальной  эксплуатации, 
каждая  из  двух  рассматриваемых  групп  самолетов  может  быть  дополнительно  разделена 
по  характерному  уровню  нагруженности  на -групп. Определив  величины и , 
можно оценить  эксплуатационный    уровень  нагруженности  данного  самолета  и  величину 
условной  часовой  повреждаемости  элементов  его  силовой  конструкции  (4.4.16).  При 
определении  величины  эквивалентной  часовой  наработки,  значение  коэффициента 
форсирования, в отличие от (4.4.11), можно принять равным: 
                                           (4.4.18) 
Данное  утверждение  справедливо,  поскольку  величина  условной  часовой 
повреждаемости  как  для  слабонагруженных  самолетов  строя,  так  и  для  самолетов-
лидеров  определяется  в  соответствии  с  выражением  (4.4.16),  т.е.  на    сновании  прогноза 
Рис. 4.4.4. Рассеяние значений вертикальной перегрузки 75,4э кв
yn 25,3э кв
yn 99.01
34.1
2*





эквyn 995.0
34.1
*





эквyn 60.2
34.1

эквyn 48.3э кв
yn %99P э кв
y
э кв
y
э кв
ynnnmax 32.7maxэ кв
yn э кв
y
э кв
y
э кв
ynnnmin 36.0minэ квyn э кв
ynS n э кв
ynm ax э к в
ynm in *
**
At
BtFK
 *t  

 75 
реальной  эксплуатационной  нагруженности.  В  тех  случаях,  когда  требуется  определить 
коэффициент  форсирования  высоконагруженного  самолета-лидера  по  отношению  к 
типовой  нагруженности  самолета  данного  типа,  реализованной  с  помощью  программы 
усталостных испытаний —  необходимо использовать уравнение (4.4.11). Прогнозируемая 
величина  эквивалентной  часовой  наработки  для  самолетов  заданной  группы 
нагруженности вычисляется в случае единичных полетов с помощью уравнения (4.4.12), а 
при выполнении серии полетов — с помощью (4.4.13).  
Особые  условия  эксплуатации  самолетов  с  высоким  уровнем  эксплуатационной 
нагруженности  требуют  особого  контроля  технического  состояния  наиболее 
ответственных, с точки зрения безопасности, узлов и агрегатов их силовой конструкции. В 
результате  проведения  такого  контроля  (как  правило,  это  визуальный  целевой  осмотр 
конструкции)  накапливается  информация по  отказам  тех  или  иных 
ресурсоограничивающих  зон  (РЗ)  планера.  Таким  образом,  образуются  два 
информационных  поля:  первое  данные  по  отказам  РЗ  самолетов-лидеров  и,  второе – 
соответствующая  этим  отказам  эквивалентная  часовая  наработка.  А  поскольку  на 
слабонагруженных  самолетах  при  достижении  ими  наработки  близкой  к  эквивалентной 
наработке  самолетов-лидеров  будут  происходить  отказы  тех  же  РЗ,  то  на  основании 
дальнейшего вероятностно-статистического анализа данных вида  «отказ – эквивалентный 
налет»,  может  быть осуществлен  прогноз  долговечности  этих  РЗ  основной  массы 
самолетов  парка  на  этапе  эксплуатации.  Следовательно,  определение  эквивалентной 
часовой  наработки  самолетов,  имеющих  повышенный  уровень  эксплуатационной 
нагруженности,  является  неотъемлемой  составной  частью  прогнозирования 
долговечности  узлов  и  агрегатов  силовой  конструкции  планера  высокоманевренных 
самолетов на этапе их массовой эксплуатации. 
   

 76 
4.5. Статистический анализ рассеяния эквивалентной часовой наработки на отказ 
ресурсоограничивающих зон планера маневренных самолетов (по данным 
эксплуатации) 
 
Полетные  нагрузки,  вызывают  в  силовой  конструкции  маневренного  самолета 
постепенное  накопление  усталостных  повреждений.  Накопленные  повреждения  при 
достижении критического уровня приводят к усталостным отказам (трещинам) в несущих 
элементах  данных  силовых  конструкций.  Отказы  элементов  выявляются  службой 
контроля  технического  состояния  во  время  целевых  осмотров  конструкции  при 
определенном  налете  (эквивалентной  наработке)  самолета.  При  этом уровень 
накопленных  усталостных  повреждений,  а  именно,  величина  условной  часовой 
повреждаемости,  определяется  для  всей  силовой  конструкции  самолета  в  целом,  т.е. 
уровень  усталостных  повреждений  в  каждой  ресурсоограничивающей  зоне  не 
рассматривается.  О  величине  накопленных  усталостных  повреждений  в  конкретной  зоне 
или  элементе  конструкции  на  момент  осмотра,  судят  по  косвенным  признакам:  либо  по 
отказам  других,  менее  ответственных  зон-индикаторов,  либо  по  характеру  повреждений 
(например,  длине  трещины)  в  самой  зоне,  элементе  конструкции.  Таким  образом,  при 
моделировании  процессов  расходования  ресурса  несущими  элементами  силовой 
конструкции  маневренных  самолетов  на  этапе  эксплуатации,  первоочередной  задачей 
является проведение более точной классификации зон и элементов конструкции как по их 
эквивалентной наработке на отказ, так и по уровню влияния данного отказа на надежность 
самолета в целом.  
Классификация ресурсоограничивающих зон, по их конструктивной значимости или 
по  уровню  влияния  их  отказа  на  общую  надежность  силовой конструкции,  является 
очевидной  (типовой)  для  самолетов  классической  схемы.  К  таким  зонам  могут  быть 
отнесены  наиболее  нагруженные  области  силовой  конструкции  маневренного  самолета: 
например,  зона  соединения  крыла  и  фюзеляжа,  узлы  крепления  двигателя,  элементы 
системы крепления и привода механизации крыла и оперения и т.д. 
Классификация  несущих  элементов  конструкции  по  величине  эквивалентной 
часовой  наработке  на  отказ  проводилась [26] с  помощью  статистического  анализа 
соответствующей  совокупности  значений  наработок  для  ресурсоограничивающих  зон, 
наиболее опасных с точки зрения последствий их отказа. 
Сбор и анализ информации об отказах силовой конструкции планера самолета  стали 
актуальными  лишь  в  последние  годы  в  связи  со  стремлением  перейти  на  эксплуатацию 
авиационной  техники  по  их  фактическому  техническому  состоянию  с  учетом  свойств 
живучести  конструкции.  Количество  самолетов,  на  которых  проводятся  целевые  осмотры 
невелико  (в  основном,  это  самолеты-лидеры).  Следовательно,  выборочная  совокупность 
значений эквивалентной часовой наработки на отказ конкретной ресурсоограничивающей 
зоны (РЗ) является неполной. Наряду с этим, усечение совокупности возможных значений 
эквивалентной  часовой  наработки  РЗ  на  отказ,  происходит  так  же  в  связи  с  тем,  что 
осмотр  конструкции  проводится  сразу  по  нескольким  опасным  зонам,  и  самолет  может 
быть временно снят с эксплуатации по причине отказа одной из рассматриваемых РЗ. 
Таким  образом,  на  сегодняшний  день,  единственным  источником  информации, 
отражающим  техническое  состояние  силовой  конструкции  планера  самолета  в  условиях 
реальной эксплуатации, остаются целевые осмотры. По результатам проведенных целевых 
осмотров  конструкции,  специалистами  эксплуатирующей  организации  составляются 
«Акты  освидетельствования» технического  состояния  конструкции.  Момент  проведения 
целевых  осмотров  назначается,  когда  самолеты  достигли  определенной  величины 
суммарной  эквивалентной  наработки.  Данная  величина  эквивалентной  наработки 
определяется  для  конкретной  РЗ  по  результатам  ее  усталостных  испытаний  и 
соответствующих  коэффициентов  запаса  по  долговечности.  Для  некоторых  РЗ,  момент  

 77 
начала  проведения  целевых  осмотров  может  назначаться  в  соответствии  с  моментом 
выявления отказов в тех же зонах на более нагруженных самолетах данного типа. 
Для  проведения  статистического  анализа  рассеяния  величины  эквивалентной 
часовой  наработки  на  отказ  РЗ  силовой  конструкции  маневренных  самолетов,  автором 
были  использованы «Акты  освидетельствования» 42-х маневренных самолетов  за  период 
эксплуатации  с  1993  по  2000  г.г.  Техническое состояние  самолетов  исследовалось  с 
помощью  визуального  целевого  осмотра  ресурсоограничивающих  зон  конструкции 
планера.  При  целевом  осмотре  элементов  конструкции,  минимальная  обнаруживаемая 
длина  трещины  составляла  3-5  мм.  В  некоторых  РЗ,  при  проведении  осмотра,  удалялись 
лакокрасочные покрытия или слой герметика. 
Из  42  самолетов,  28  эксплуатировались  по  высоконагруженным  пилотажным 
полетным  программам,  а  14  самолетов - являлись  наиболее  нагруженными  среди 
самолетов  строевых  частей. Как  и  ранее,  самолеты строя,  с  относительно  невысоким 
уровнем эксплуатационной нагруженности, объединим под общим названием - группа , 
высоконагруженную  группу,  для  краткости,  будем  называть – группой . Самолетов 
группы A в выборке было 14, группы B – 28. 
Необходимо  отметить, что для  типовой конструкции планера самолета еще на этапе 
проектирования  могут  быть  определены  несколько  десятков  зон  и  элементов,  отказы  в 
которых  наиболее  вероятны.  Однако,  число  ресурсоограничивающих  зон,  неисправность 
которых  действительно  влияет  на  безопасность  дальнейшей  эксплуатации  маневренного 
самолета,  не  превышает  5-10.  Большинство  зон,  имеющих  усталостное  повреждение, 
может  быть  восстановлено  в  течение  короткого  времени  службой  технической 
эксплуатации  аэродрома  базирования.  Ремонт  поврежденной  РЗ,  напротив,  является 
долгосрочным,  и  связан,  как  правило,  с  отводом  самолета  на  авиаремонтный  завод. 
Поэтому,  исследование  эквивалентных  наработок  на  отказ  таких  РЗ  конструкции 
представляет наибольшую практическую значимость. 
В  соответствии  с «Актами  осмотров»,  составленными  по  42  самолетам,  почти  за 
семь лет эксплуатации, всего было выявлено 197 отказов (трещин различной длины — от 
3  мм  до  100  мм)  в  40  зонах  конструкции  самолета.    Из  них:  27  отказов  в  12  зонах 
конструкции  было  обнаружено  на  самолетах  группы  и  170  отказов  в  34  зонах 
конструкции — на  самолетах  группы . Подробное  описание каждой  зоны,  в  которой 
был  выявлен  отказ,  значения  эквивалентных  часовых  наработок,  соответствующие 
моменту  обнаружения  отказа  в  данной  зоне  содержатся  в  работе  [26]. Значения 
эквивалентных  наработок  для  каждой  зоны  образуют  соответствующие  выборочные 
совокупности.  Основные  статистические оценки для  данных  выборок:  среднее , 
минимальное  и  максимальное  значения.  На  рис. 4.5.1  показаны диапазоны 
выборочных средних  значений ,  а  также  размах  (;)  эквивалентной  часовой 
наработки на отказ для всех зон конструкции. 
Из  40  зон,  в  которых  был  обнаружен  отказ,  неисправность  всего  лишь  нескольких 
зон  может  существенным  образом  повлиять  на  возможность  продолжения  дальнейшей 
эксплуатации  маневренного  самолета.  Размеры  усталостных  повреждений  (длины 
трещин),  выявленные  в  ходе  осмотров,  не  учитывалась,  поскольку  интерес  представлял 
только  сам  факт  отказа  и  соответствующая  данному  факту  эквивалентная  часовая 
наработка самолета. 
Предположим, что долговечность силовой конструкции планера, а, следовательно, и 
всего  самолета  в  целом,  определяется  техническим  состоянием  5-и  РЗ: Z2, Z3, Z7, Z21, 
Z33.  В  связи  с  этим,  статистическую  оценку  значений  эквивалентной  часовой  наработки 
на отказ будем проводить по 5-и наиболее ответственным ресурсоограничивающим зонам 
силовой  конструкции.  На  рис. 4.5.1  номера  пяти  указанных  РЗ  выделены 
прямоугольниками. Таким  образом,  выборочную  совокупность  образуют  значения 
эквивалентной  часовой  наработки  маневренных  самолетов  на  момент  обнаружения A B A B э кв
срt эквtmin эквtmax э кв
срt эквtmin эквtmax  

 78 
трещины  в  одной  из  пяти  рассматриваемых  РЗ  (таблица 4.5.1). Очевидно,  что  момент 
отказа  каждой  из  РЗ  (значение  эквивалентной  часовой  наработки  на  отказ)  является 
величиной  случайной, зависящей  от  ряда  параметров,  о  которых  было  сказано  выше.  Для 
оценки  параметров  функции  распределения  эквивалентной  часовой  наработки 
маневренного  самолета  на  отказ  одной  из  его  РЗ,  проведем  проверку  значений 
выборочных  совокупностей  таблицы 4.5.1  с  помощью  известных  статистических 
критериев. 
 
 
Рис.4.5.1. Диапазон выборочных средних значений эквивалентной часовой наработки на 
отказ по всем зонам конструкции маневренного самолета 
 
Для  удобства  дальнейших  расчетов,  в  качестве  данных  для  анализа  будем 
использовать  не  сами  значения  эквивалентной  наработки,  а  их  десятичные  логарифмы 
(таблица 4.5.2). Проверка нормальности значений логарифмов эквивалентных наработок с 
помощью  критерия  согласия  Шапиро-Уилка  [29],  наиболее  мощного  критерия  для 
выборок малой численности, показала что, распределения, как для каждой зоны, так и для 
общей  совокупности значений  по  всем  зонам,  не  противоречат  нормальному  закону  с 
уровнем  значимости .  С  помощью  критерия  Бартлета,  и  однофакторного 
дисперсионного  анализа,  была  проверена  и  подтверждена  с  уровнем  значимости  
однородность  дисперсий  (,  где )  и  средних  (,  где 
)  значений  логарифмов  эквивалентной  часовой  наработки  для  всех  РЗ.  Таким 
образом,  доказана  принадлежность  совокупности  отказов каждой  из  рассматриваемых  РЗ 
общей  генеральной  совокупности  и  сформирована  выборка  из  38  значений  нормальной 
случайной  величины,  имеющей  статистические  характеристики,  приведенные  в  таблице 
4.5.3. 
Поскольку,  отказ  в  каждой  из  пяти  рассматриваемых  РЗ  влечет  за  собой  временное 
снятие  самолета  с  эксплуатации,  а  исследования  технического  состояния  элементов 
силовой  конструкции  проводились  по  42  самолетам,  то  имеем:  38  самолетов  (по  числу 
отказов РЗ), с различной наработкой на отказ и 4 самолета, в которых отказа ни одной из 5 
рассматриваемых  зон  обнаружено  не  было  до  момента  времени,  соответствующего 
максимальной  эквивалентной  наработки  (3500  часов).  То  есть  выборка  объемом  42 
объекта  оказывается  цензурированной  справа,  в  которой  38  объектов,  достигли 
критического  состояния  и  4  объектов,  не  достигли  критического  состояния  к  моменту 
прекращения испытаний. %5 %5 Xx09.6 49.9X 188.1FF 95.31F  

 79 
Таблица 4.5.1. Наработка в часах на момент обнаружения повреждения в 
ресурсоограничивающих зонах планера высокоманевренного самолета 
 
№ 
РЗ =
название РЗ=эквивалентная наработка на отказ, час=
Z2 
корневая зона 
лонжерона в 
зоне стыка с 
кронштейном 
на нервюре №8 
центроплана=
53S=57M=58M=62V=1025=1200=1370=J=J=J=
Z3 
верхняя панель 
центроплана в 
зоне стенке №1=
84S=90P=1114=1700=1936=2166=2733=J=J=J=
Z7 
диафрагмы в 
зоне стенки 
№3, стык ОЧК 
и центроплана 
(гребенки)=
99T=1000=1025=1130=2166=2674=3500=J=J=J=
Z21 
Хвостовая 
балка 
(разрушение 
крепежа)=
252=1003=1936=2166=2674=3500=J=J=J=J=
Z33 
крепление 
кронштейна 
навески  руля 
направления на 
киле =
87M=90R=1000=1050=13602 1470 1700 2733 2610 3265 
(13602  - индекс 2 означает, что отказ РЗ был зафиксирован при такой наработке дважды) 
Таблица 4.5.2. Основные статистики значений логарифмов эквивалентных наработок на 
отказ для пяти рассматриваемых РЗ 
№ зоны 
п/п=Число=отказов=
среднее=
значение.=
минимальное 
значение.=
максимальное 
значение.=
коэф. 
вариации=
lg (t) ср lg(t) min lg(t) max lg(t)
Z2 7 2,90 2,73 3,14 0,06 
Z3 7 3,17 2,93 3,44 0,06 
Z7 7 3,20 3,00 3,54 0,07 
Z21 6 3,17 2,40 3,54 0,13 
Z33 11 3,18 2,94 3,51 0,06 
Таблица 4.5.3. Основные статистические характеристики объединенной выборки значений 
эквивалентной часовой наработки по пяти РЗ 
 
№ зоны 
п/п=
=суммарное число=
отказов=
среднее=
значение.=
минимальное 
значение.=
максимальное 
значение.=
коэф. 
вариации=
lg (t) ср lg(t) min lg(t) max lg(t)
1-5383,132,403,540,0824
Рассматривая  выборку  значений  для  конкретной  РЗ  (например, № Z2),  имеем 
многократно (прогрессивно) цензурированную выборку, в которой имеется 7 наблюдений 
наработки к моменту прекращения испытаний. В тоже время имеется 31 объект, снятый с  

 80 
испытаний по причине отказа в оставшихся четырех зонах: Z3, Z7, Z21, Z33, наработка на 
отказ  которых  известна.  Но,  в  этих  4-х,  а  также  еще  в  4-х  объектах,  не  достигших 
критического состояния ни в одной РЗ к моменту полного прекращения наблюдения (3500 
часов), не наблюдалось трещин во второй РЗ. 
Обработка многократно  цензурированных  выборок  для  каждой  РЗ проводилась 
методом наименьших  квадратов [77]. На  основании  теоретических  исследований,  и 
анализа  большой  совокупности  данных по  отказам  РЗ  самолета  данного  типа, 
накопленных  многолетним  опытом  эксплуатации,  принято,  что  закон  распределения 
долговечности  элементов  авиационных  конструкций  является  логарифмически 
нормальным.  Функция  плотности  вероятностей  и  функция  распределения 
двухпараметрического логарифмически нормального закона имеют соответственно вид: 
,                            (4.5.1) 
 ,                                         (4.5.2) 
,                                 (4.5.3) 
 - параметры распределения, 
;  - наработка к моменту отказа. 
При назначении гарантированного ресурса авиаконструкций важной статистической 
задачей  является  интервальное  оценивание  квантили  распределения.  Верхняя и  нижняя 
доверительные границы ,  для  квантиля  распределения  уровня  
отвечают соотношениям: 
,                                        (4.5.4) 
,                                       (4.5.5) 
где  - уровень доверительной вероятности. Обычно уровень доверительной вероятности 
принимают  0,9  или  0,95.  Доверительные  оценки  рассчитывают  на  основе 
выбранного  гипотетического  распределения  по  оценкам  его  параметров.  Односторонние 
доверительные  границы  для  квантилей  нормального  закона  распределения  в  полной 
выборке определяют по формулам [29]: 
,                         (4.5.6) 
,                      (4.5.7) 
где  - квантиль  уровня  нецентрального  распределения  Стьюдента  с  
степенями свободы и с параметром нецентральности ,  - квантиль уровня  
нормированного  нормального  распределения,  - оценки  параметров  нормального 
распределения. 
 Приближенное  значение ,  соответствующее  числу  степеней  свободы , 
параметру  нецентральности  и  доверительной  вероятности  определяется  из 
уравнения [29]: 
,                         (4.5.8) txln t pux plx ppzax P ppuxxPˆ pplxxPˆ  plpuxxˆ,ˆ 
n
nzntaxppu


ˆ,1ˆˆ 
n
nzntaxppl


ˆ,1ˆˆ1 ,ft  1nf nzp pz P ˆ,aˆ t 1nf nzp  B
CBAAnftt
2
1,1, 0,
2
1)(2
2
2
)(







ax
xexf )()(
axxFx
 dtez
zt



2
2
2
1)(
 ,a  

 81 
,                            (4.5.9) 
,                              (4.5.10) 
 .                                       (4.5.11) 
 
Элементы  ковариационной  матрицы  ММП-оценок  параметров  вычисляются  по 
формулам: 
                            (4.5.12) 
,                                         (4.5.13) 
,                                      (4.5.14) 
,                                    (4.5.15) 
 
 В полной выборке при независимости параметров сдвига и масштаба имеем: 
 ,                                 (4.5.16) 
          (4.5.17) 
При известном генеральном  значении  параметра ,  например, =0,15  (см.  раздел 
2.4),  доверительные  границы  (4.5.6),  (4.5.7)  упрощаются  за  счет  исключения  вариации 
среднего квадратического отклонения: 
,                                  (4.5.18) 
,                                  (4.5.19) 
где  - квантиль уровня  нормированного нормального распределения. 
Оценки параметров  распределения  для  многократно  цензурированных  выборок в 
соответствии  с  рассмотренным  алгоритмом, определялись  с  помощью программы  на 
языке Javascript. Программа  содержит  открытый  исходный  код  и  размещена  по  адресу: 
http://inteh.mpei.ru. Входными  данными  являются  массивы  значений  эквивалентных 
наработок  на  отказ  рассматриваемых  РЗ,  и  величина  уровня  доверительной  вероятности 
.  На  выходе - значения  оценок  математического  ожидания  и  среднеквадратического 
отклонения ,  а  также  значения  доверительных  границ  для  заданной  квантили 
распределения.  Программа  позволяет  строить  эмпирические  функции  распределения 
наработки  на  отказ  и  ее  оценку  гипотетической  логарифмически  нормальной  функцией 
распределения  с  заданной  доверительной  областью. Результаты  расчетов  представлены  в 
таблице 4.5.4. n
z
fA
*2,12*2,2
21





 f
z
fB
*2,222*2,2
21





 *1,122zC  






DaD
aDaD
n,
,*2 *1,1
2
naD *2,2
2
nD *2,1
2
n,aD 0,5,0,1*2,1*2,2*1,1 
222
,122
11114 4 2 2,1
1142
zzf f f ft f n
z
ff




                     
   *1,1ˆˆpu px a z n z
n
      *1 1,1ˆˆpl px a z n z
n
      z   aˆ ˆ  


    
Яндекс цитирования Яндекс.Метрика