Единое окно доступа к образовательным ресурсам

Логика: задачи и их решение: Учебно-методическое пособие

Голосов: 11

Предлагаемое пособие предназначено для студентов гуманитарных факультетов, изучающих традиционную формальную логику. Решая задачи, надо иметь под рукой какой-либо из учебников по традиционной формальной логике или хороший конспект лекций. Читателю рекомендуется взять контрольную работу, помещенную в конце, и попытаться ее выполнить, проясняя теоретические вопросы по учебнику, и следуя указаниям при поиске конкретных решений.

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.
Изображения (картинки, формулы, графики) отсутствуют.
    И. Б. Микиртумов

ЛОГИКА: ЗАДАЧИ И ИХ РЕШЕНИЕ

Учебно-методическое пособие, преимуществен-
но, для заочников


                             ПРЕДИСЛОВИЕ

       Предлагаемое пособие предназначено для студентов гуманитарных фа-
культетов, изучающих традиционную формальную логику. Решая задачи, надо
иметь под рукой какой-либо из учебников по традиционной формальной логике
(см. литературу) или хороший конспект лекций. Читателю рекомендуется взять
контрольную работу, помещённую в конце, и попытаться её выполнить, прояс-
няя теоретические вопросы по учебнику, и следуя нашим указаниям при поиске
конкретных решений. Что-то поначалу может показаться сложным. Но бояться
нечего. Традиционная формальная логика – вещь нестрашная, всеми ногами
стоящая на здравом смысле, которым, помимо специальных правил, и следует
руководствоваться при решении логических задач.


             КАК РЕШАТЬ ЗАДАЧИ ПО ТЕМЕ «ПОНЯТИЕ»

      1. Изображение отношений объёмов понятий круговыми схемами.

      Первый вид задач по теме «Понятие» – это задачи на изображения «кру-
гами» Эйлера отношений объёмов понятий. Здесь следует помнить, что объём
понятия – это класс предметов, которые под него подпадают, например, объём
понятия «слон» – это класс слонов. При этом под классом имеется в виду вир-
туальная совокупность объектов, т. е. класс – это ни в коем случае не собрание
объектов в одном месте, не их «групповой портрет», а то, что потенциально
может получиться, если бесконечно повторять операцию подразделения объек-
тов на те, которые подпадают под данное понятие, т. е. обладают признаками,
входящими в его содержание и на те, которые такими признаками не обладают.
Например, класс слонов – это виртуальная совокупность всех таких объектов,
которые мы склонны были бы считать слонами, независимо от времени, места и
существования этих объектов. Некий воображаемый, но не существовавший, не
существующий и не могущий существовать никогда в будущем слон также
будет принадлежать этому классу, коль скоро он слон. Впрочем, иногда под
объёмом понятия подразумевается его так сказать фактический объём, т. е.
совокупность подпадающих под понятие объектов, ограниченная местом, вре-
менем или ещё какими-либо обстоятельствами. Например, под классом слонов
можно в этом случае мыслить совокупность всех ныне здравствующих слонов,
не примешивая сюда слонов из прошлого, будущего, из сказок, снов или мечта-
ний. Чтобы решить, идёт ли речь о фактическом объёме понятия или о его объ-
ёме, понятом в широком смысле, требуется привлечение информации, содер-
жащейся в контексте употребления понятия. Например, в суждении «Слоны
летать не умеют» подразумевается, очевидно, вся совокупность слонов, в то
время как в суждении «Слоны сегодня в танцах не участвовали» идёт речь о




                                                                            2


некотором множестве слонов, относительно которого известно, что они могли
участвовать в танцах, но не сделали этого по каким-либо причинам. Точно так
же, в суждении «Слон здесь вчера потоптал все ландыши» имеется в виду ка-
кой-то один слон, а в суждении «Слона не заставишь прыгать на скакалочке» –
снова весь класс слонов.
       Все объекты образуют универсальный класс U (также, конечно, вирту-
альный), внутри которого мы выделяем классы тех или иных интересных нам
объектов, например, классы слонов, людей или страусов. Это выделение мы
демонстрируем на рисунке, в виде некоторой фигуры (не обязательно круга),
очерчивающей класс.
       Бывает и так, что нельзя представить себе никакого объекта, который
входил бы в объём понятия. Это имеет место в тех случаях, когда понятие про-
тиворечиво по своему содержанию, как, например, понятие «круглый квадрат».
Использование данного понятия рано или поздно приведёт к противоречию,
поскольку свойство круга, состоящее в том, что все образующие его точки
равноудалены от некоторой другой точки, его центра, явно несовместимо со
свойствами квадрата, т. е. круглый квадрат будет обладать двумя взаимоисклю-
чающими свойствами, что, конечно, недопустимо для объекта, который мы в
каком-либо смысле считаем существующим. Противоречивые по содержанию
понятия имеют пустой объём и называются поэтому пустыми. Эта пустота
связана с принципиальной невозможностью для нашей логической интуиции
принять существование чего-либо, что могло бы подпадать под такого рода
понятие и её нельзя путать с возможной пустотой фактического объёма поня-
тия. Например, понятия «русалка», «сумчатый волк», «динозавр» относительно
некоторых места, времени и обстоятельств могут иметь пустой фактический
объём, а относительно других места, времени и обстоятельств могут иметь
непустой объём, чего нельзя сказать о понятиях «круглый квадрат», «сухая
вода», «обезжиреное масло», «горячий снег» или «безалкогольное пиво», если
понимать их не как стилистический оборот, так называемый оксюморон, а бук-
вально. Ведь вода мокра и не может быть сухой, масло по своему определению
есть нечто жирное, снег – холодное, пиво – содержащее спирт, и присоединение
противоположных свойств во всех этих случаях даёт понятие противоречивое
по содержанию, а следовательно, всегда, везде и во всех обстоятельствах пустое
по объёму.
       Ещё одна сложность в понимании того, что такое объём понятия связана
с трактовкой того, какое понятие является абстрактным, а какое конкретным.
Кому-то может показаться не вполне приемлемым, ставить на одну доску поня-
тия «осёл» и «справедливость» и говорить об их объёмах исходя из одних и тех
же принципов. В самом деле, если указание объёма первого понятия кажется
простым, то требование указать хотя бы один объект, который являлся бы спра-
ведливостью, ставит нас в тупик. Здесь всё дело в том, что такое объект с точки
зрения логики и что значит на него указывать. Под объектом в логике мы будем




                                                                             3


понимать всё, о чём можно делать утверждение или отрицание, независимо от
того, предполагается ли здесь существование этого нечто в качестве чувствен-
но воспринимаемого предмета или нет. Круглый квадрат – это тоже объект,
хотя и невозможный. Мы понимаем, о чём идёт речь, когда говорим, что он не
может существовать по тем или иным причинам, а это значит, что круглый
квадрат выступает в роли объекта нашей мысли. Заметим, что никак иначе
вообще нельзя стать объектом.
       Чтобы стало ясно, почему объёмы понятий «осёл» и «справедливость»
ничем принципиально не различаются между собой, приведём ряд примеров.
Возьмём понятие «электрон». Объекты, подпадающие под это понятие, как
известно, никаким образом не могут стать предметом чувственного восприятия.
Это относится и к объектам, относящимся к объёму понятия «теплород», кото-
рое фигурировало в физике XVIII столетия, но не используется в современной
физике, поскольку несовместимо с данными экспериментов. Существование
электрона и несуществование теплорода никак не связано с возможностью
чувственного восприятия соответствующих объектов. Чем же хуже такие поня-
тия как «справедливость», «воля», «совесть», «красота» или, наконец, понятие
«водный простор» и т. п.? То, что мы понимаем под этими словами, когда ис-
пользуем их, понимается или мыслится нами точно так же, как мы мыслим
любые физические или математические объекты, подразумеваемые при исполь-
зовании соответствующих понятий. Но и чувственно воспринимаемая вещь,
коль скоро она может быть мыслима только как элемент объёма некоторого
понятия, оказывается таким же объектом мысли, что и любой другой, относя-
щийся к объёму «абстрактного» понятия. Во всех случаях, когда мы говорим об
объёме понятия, речь идёт о чём-то, что не является чувственно воспринимае-
мым, но существует в уме, как объект, мыслимый с теми или иными свойства-
ми. В частности, понятие «осёл» существует только в уме, и наличие какого-
либо чувственно воспринимаемого предмета, о котором можно было бы ска-
зать, что это осёл, является не более, чем удачным стечением обстоятельств.
Ничто не мешает мыслить это понятие в отсутствие какой-либо особи осла,
подобно тому, как мы мыслим русалок и кентавров. Таким образом, наличие
чувственно воспринимаемых предметов, подпадающих под объём понятия не
является необходимым ни для того, чтобы мыслить это понятие, ни для того,
чтобы говорить о непустоте этого объёма.
       Какое же понятие является абстрактным, а какое – конкретным? Ответ
звучит так: абстрактными являются понятия о свойствах и отношениях как
таковых, т. е. отвлечённых (абстрагированных) от своих носителей.
       Прежде чем мы перейдём к тому, как отношения объёмов понятий выра-
жаются круговыми схемами, заметим, что, строго говоря, в логике понятиям
соответствуют только роды и виды, но фактически сложилось так, что мы назы-
ваем понятием любой термин. В дальнейшем слова «понятие» и «термин» ис-
пользуются как синонимы.




                                                                          4


      Разберём теперь пример. Пусть даны понятия

                      слон; хобот; хвост; часть слона.

Действовать надо так: рисуем фигуру, соответствующую объёму понятия слон;
затем спрашиваем, в каком отношении к объёму этого понятия может находить-
ся объём понятия хобот. Очевидно, что ни один хобот не является слоном и ни
один слон не является хоботом, поэтому фигура, соответствующая объёму
понятия хобот не должна соприкасаться с фигурой, очерчивающей объём поня-
тия слон. Точно так же мы рассуждаем применительно к понятиям хвост и
часть слона и взаимоотношениям их объёмов с объёмами понятий слон и хо-
бот. Тут мы обнаружим, что объём понятия часть слона имеет общие элементы
с объёмами понятий хвост и хобот, поскольку некоторые хвосты и хоботы
являются частями слонов. Правильное решение задачи выглядит так:


       слон            хвост                  хобот


                               часть слона

                                                                U
Здесь U обозначает универсальный класс или класс всех объектов.
      Обычная ошибка при решении заданий такого рода состоит в том, что
объёмы понятий хвост, хобот, часть слона рассматривают как пересекающиеся
с объёмом понятия слон или даже включённые в него. При этом забывают раз-
личие между объёмом понятия и самим предметом. У слона есть хобот и хвост,
но сами по себе хвост или хобот, даже приставленные к слону на подобающие
им места, слонами не являются.
      Рассмотрим решение ещё одного такого задания. Даны понятия

      страус; перья; крыло; обитатель пампас; гордая птица;
      существо белого цвета; гордый белый страус, не живущий в пампасах




      Правильное решение не очень живописно :

           обитатель              гордая
         пампас                    птица           перья




                                                                          5


                                   А
                         страус

                  существо белого цвета              крыло


Здесь объём последнего понятия оказывается очерчен фигурами, изображаю-
щими объёмы остальных, и соответствует сектору, в котором стоит А.
      Кто-то может подумать, что говорить о птице, как о гордом существе, а
тем более, говорить о гордом страусе – это бессмыслица. Это не совсем так.
Конечно, говоря совсем уж строго, страус гордым быть не может, т. к. гордость
есть свойство личности, а в страусе многие могут быть не готовы признать
личность, и тогда фактический объём понятия «гордый страус» пуст. Но только
фактический объём, а не объём этого понятия вообще, в широком смысле. В
дальнейшем читателю рекомендуется шире использовать своё воображение.


      2. Род и вид.

       Следующий вид задач связан с отысканием рода и вида для данного
понятия. Здесь надо руководствоваться следующим. Когда мы хотим выяснить,
что есть род для понятия А, мы должны спросить «Что есть А?» или «Что есть
каждый объект, являющийся А?» Правильный ответ даст нам род. Например,
«Что есть человек?» Отвечаем: «Человек есть болтливое животное». Если так,
то родовым для понятия человек является понятие болтливое животное. Точно
так же родовыми для понятия человек будут понятия живое существо, двуногое
без перьев и пр.
       Любое понятие, которое является видом для А, подходит для ответа на
вопрос «каким бывает А?» Например, если спросить, «каким бывает человек?»,
то в качестве ответа сгодится: «очень скучным». Значит, понятие скучный чело-
век есть вид для понятия человек или просто вид человека. Другими видами
людей могут оказаться понятия наша общая подруга Мария Ивановна, канди-
дат наук, одноногий пират и пр.
       Объём родового для А понятия всегда включает в себя объём А, а объём
понятия, видового для А, напротив, включён в него.
       Определим теперь род и вид для каждого из понятий:

      слон; стадо слонов; слон в посудной лавке; толстокожесть

Будем записывать слева род, а справа – вид:

      животное – слон – Африканский слон;




                                                                           6


      организованная группа больших животных – стадо слонов –
                                             стадо слонов, бегущее на водопой;
      слон – слон в посудной лавке – слон в антикварной посудной лавке;
      свойство характера – толстокожесть – толстокожесть
                                                      Петра Петровича;

Для последнего случая возможно и прямое понимание слова «толстокожесть»:

      свойство кожи – толстокожесть – толстокожесть бегемота Бубы.


      3. Виды определений и ошибки при определении.

      Напомним, что определение понятия есть раскрытие его содержания и
очень грубо может быть охарактеризовано как то или иное перечисление при-
знаков, которые мыслятся в связи с данным понятием. Последовательный пере-
ход от родов к видам, путём добавления видообразующих признаков даёт нам
общую структуру определения через род и видовое отличие. Например, в опре-
делении

       Слон есть самое крупное млекопитающее, обитающее на суше

вслед за родовым понятием «млекопитающее» вводятся два видообразующих
признака «самое крупное» и «обитающее на суше», благодаря которым мы
получаем некоторый вид млекопитающих, представителей которого предлага-
ется именовать слонами.
      В зависимости от того, какой характер носят видообразующие признаки,
выделяют три вида определений, а именно, генетическое, операциональное и
целевое. В первом указывается на происхождение или получение объекта (в
каком-либо смысле), во втором – на некоторую процедуру (тест), позволяющую
этот объект идентифицировать, а в третьем – на некоторую функцию, для вы-
полнения которой этот объект предназначен. Например, определения

        Слон – это зверь, который получится из взрослого бегемота,
            если его долго кормить одними сладкими булочками

и

Ржавчина – красно-коричневый налёт, образующийся на поверхности железно-
      го предмета после достаточно длительного контакта с водой

являются генетическим. Определения




                                                                             7


    Слон – это обитатель джунглей и пампасов, который зеленеет, если ему
           спеть песенку, и желтеет, если рассказать стихотворение

и

            Философия – наука, изучение которой проясняет мысли

являются операциональными, а определение

              Молоток – это инструмент для забивания гвоздей

является целевым. (Дать целевое определение слона нельзя, поскольку очевид-
но, что мы не знаем и никогда не узнаем, для чего слоны предназначены, хотя
они и могут выполнять различные хозяйственные функции.)
       К числу наиболее распространённых ошибок при формулировании опре-
делений относятся: (1) несоразмерность определения, когда объёмы определяе-
мого и определяющего не совпадают, (2) тавтология (круг) в определении,
когда понятие А определено само через себя, (3) отрицание в определении, (4)
использование метафор, сравнений или сходных с определениями приёмов
описания или характеристики объектов.
       Рассмотрим теперь примеры задач, в которых предлагается установить
вид определения и найти ошибки, если, конечно, они есть. Итак,

                              Слон – большой зверь.

Ясно, что это определение является определением через род и видовое отличие.
Отношение объёмов понятий слон и большой зверь есть отношение подчинения,
соответствующее следующему рисунку


                       слон
                                  большой зверь

так что сформулированное определение является несоразмерным, а именно,
слишком широким, так как, например, и бегемот окажется тогда слоном.

       Слон – это млекопитающее, имеющее большие уши, но не моська

Здесь снова определение через род и вид и в нём очевидно присутствие отрица-
ния.




                                                                           8


         Слон – это животное, помещение которого в посудный магазин
                  всегда имеет разрушительные последствия.

Это определение является операциональным и несоразмерным – не только
слоны опасны для посудных магазинов.

         Слон – это тот, кто в посудном магазине ведёт себя как слон

Здесь мы видим тавтологию.

                            Слоны – корабли пампасов

Легко заметить метафору, содержащуюся в этом определении.

          Слон – это животное, на котором в торжественных случаях
               выезжали Великие Моголы, умеющее собирать чай

Это – определение через род и вид, но слишком узкое. Великие Моголы дейст-
вительно по особым случаям выезжали исключительно на слонах, но свойство
«уметь собирать чай» присуще не всем слонам:

                     слон
                                  животное ...

Отметим, что если это свойство заменить на «способное собирать чай», то оп-
ределение окажется более правильным, поскольку указанной способностью, в
отличие от умения, обладают все слоны.
       Наконец, бывают случаи, когда представленный пример вообще не явля-
ется определением:

      Место жительства купца Восьмибратова определено в Замоскворечьи

или

                Этот слон легко определяется как Африканский

Надо помнить, что определение понятия – это раскрытие его содержания, т. е.
явное указание тех признаков, которыми обладают все подпадающие под поня-
тие объекты. Само же слово «определение» и однокоренные ему слова могут
употребляться и в других смыслах, что не делает определениями понятий вы-
сказывания, в которые они входят.




                                                                         9


      4. Ошибки при делении объёма понятия.

      Другая логическая операция, в которой мы также рассматриваем типич-
ные ошибки – это деление объёма понятия. Ошибки эти таковы: (1) неполнота
деления, когда объём делимого понятия не исчерпан объединением объёмов
членов деления, (2) деление по разным основаниям, когда члены деления выде-
лены по различным признакам, (3) деление неисключающее, когда члены деле-
ния пересекаются, (4) деление со скачком, когда основание деления одно, но
некоторые из его членов выделены с учётом некоторого добавочного признака.
      Рассмотрим примеры.

      Слоны делятся на больших, длинноухих, Индийских и злопамятных

Очевидно различие оснований, по которым получены члены такого деления.
Говорить о неполноте здесь не имеет смысла.

      Среди слонов встречаются умеющие работать на лесозаготовках,
            умеющие собирать чай и умеющие играть на зулейке

Такое деление, во-первых, неполное, поскольку могут быть и другие слоновьи
умения и, во-вторых, неисключающее. Некоторые слоны, наверняка, могут и
лес заготавливать, и чай собирать, и на зулейке играть.

           Одни внуки слона получили высшее образование, другие –
               общее среднее, третьи – среднее техническое

Такое деление неполно: почему бы не включить сюда внуков слона, получив-
ших начальное образование. Кроме того, имеет место скачок, поскольку, если
мы выделяем ступени образования, то, наряду с начальным и высшим, должно
присутствовать и среднее. Оно, в свою очередь, может быть подразделено на
общее среднее, среднее техническое, среднее музыкальное и т. п.

   Некоторые слоны предпочитают обои без рисунка, другие любят обои с
    кваратиками, третьи – с ромбиками, четвёртые – с полосками и т. д.
Здесь имеет место скачок. Выделение слонов, которые любят обои с различны-
ми видами рисунка, произведено внутри множества слонов, которые вообще
любят обои с рисунком. При последовательном делении без скачка, мы сначала
получили бы слонов, которые любят обои без рисунка и слонов, которые любят
обои с рисунком, а последние стали бы уже делиться по пристрастиям к тем или
иным видам рисунков, но это было бы уже другое деление.




                                                                         10



    
Яндекс цитирования Яндекс.Метрика